A Set of 74 Test Functions for Nonlinear Equation Solvers

نویسنده

  • John R. Rice
چکیده

This report gives 74 funct ions appropriate to use to test programs which solve one nonl inear equat ion in ofie real variable . The funct ions are given in a Fortran subrout ine as a two-dimensional array . A SET OF 74 TEST FUNCTIONS FOR WO* 'LINEAR F.OUATION SOLVERS INTRODUCTION AMP SUT1MA n Y: Tliis report «ives 74 functions in FORTRAN code which have been gathered as a set of test funct ions for a nolyalpori thp to solve F(x) = 0 . These functions are arranged in a two-dinensional array whose indices are passed through the bloc): common COMMON /FDATA/ J ,JJ and thus F(x) can be used in its sinnlest form . The ranges of the indices are J = 1 JJ 1 to 14 J = 2 JJ « 1 to 12 J = 3 JJ * 1 to 10 J =» 4 JJ • I to 24 J = 5 JJ 1 to 14 These functions may he classified into overlanpinir T O U O S accord in" to various propert ies the funct ions possess. This classificat ion is given below wi th the notat ion that 3-8 denotes the eiphth elerient of the third group (i .e. , J = 3 , JJ = 8) . -iISIMPLE (25 members) 17 1-11 22 25 26 33 3fi 42 43 4 7 49 4-10 4-11 4-12 4-14 4-15 4-17 4-18 4-19 4-20 4-21 4-22 4-23 4-24 CLUSTERED ROOTS (7 members) 16 1-10 51 52 53 54 55 MULTIPLE ROOTS (14 members) 1 2 1 3 1 4 15 16 19 1-10 4 1 4 4 4 5 46 48 4-16 58 FRACTIONAL ORDER ROOTS (7 members) 13 1-10 28 34 37 5-11 5-12 DISCONTINUITIES (4 members) 1 5 2 9 2-10 32 ASYMPTOTES TO ZERO (6 members) 1-12 56 5 7 58 59 5-10 ROUND OFF SENSITIVE (5 members) 18 1 9 2 4 27 35 NON-FUNCTIONS (3 members) 3 8 3 9 3-10 PATHOLOGICAL (11 members) 1 3 1 5 2 1 24 29 31 32 34 4-13 5-11 5-12 BADLY SCALED (6 members) 11 1-11 21 23 5-13 5-14 FROM ' REAL ' PROBLEMS (2 members) 1-13 27 (A number of other test functions from ' real ' problems they require too much Fortran code for inclusion here) . are avai lable , F U N C T I O N F(X] r0" :j r> ' !/ F n T / J , JJ r^TA P] / co TO 11 < ' »?<", 3C . %400 , ?00) , JJ C T*"ST FI'NCIIC-NS IN US C SUMMFft 19*7 i on rô TiHi.jF PO TC(1»2 ,3 ,4 ,5 ,6 ,7 .0 ,9 ,1C ,11 ,12>13) , J 1 F = ( X . 1 2 F + I F ( A! : 'S (XJo l T . X j E 0 } X = J.rfl F = A ^ S I X Q . L W U 1 r>FTUP> 1 3 F = A p S( J ^ ^ o T ^ ^ ^ S t X + l S ? ? ) * * ] „5*( (X-„ II-O5) / AHSIX, , 1F-10) ) PS i XALO ' ; = 0,. T P t X . N P . P . ) X*L0"= X*AL0r { A^S(X J ) F = ( X l l o ? ^ 7 ! ( . # X 0 1*X A L0G**2 7 . ) PETU ,^; l , * rQMTiMU^ I r I V»S(X). ' : c 0 r >. ,9> TO SOI I F ( X»L c v i ' t ) c = SINtA .^X) I F ( X . f t ) F = .7 I F l Y / ^ ^ . r . a ) r _ ( x + , O 0 0 C 3 ) * ( l „ + C O 5 ( ^ C C a * y . ) / 2 . ) i F I X . ^ c ] ) c = F = A ^ o f X . O * * ? IF( At»S(X) F = A p S ( X ) I F ( 9 A . M D e x B L T „ 4 0 3 o ) F = < X 3 0 0 „ ) s { X ~ 3 1 4 „ ) * ( X ~ 3 9 9 « ) * * 2 RETURN F = APSl X-17 0 )»*?V ° S(X-17 .1 >*»1 u «*(X-?0 . ) 0 F J • ;p N 7 F = I X l J » ( v ' > 1 ) # ( X ' > < } * I X i s ) * I X M * ( X A „ ) DFTijo\i P F = M ( ( (X-? l „ )*X+17* . , ) * X 7 3 5 0 )*X+U,24„ * X + 7 2 0 „ 9 Y = X + 1 , ] ] U 1 C 7 . Y 9 ( ° . Y » ( , Y ) ) ) "FTll^M 7 • v = X 7 * l ? . ! F( ^ S ( Y ) ^ T „ , 1. !T+7 i Y = S I ̂ N ( « 1F+7 1Y 1 ~ = A L O M C ( 1 a+Y*-*? )*( Y + 1 6 . )*SJRT< />PS{ Y-Ro ) ) PT ' JP ' V 1] Y = SO?T t apS(X-*0~ 1 o ) ) IF(A ̂ S ( X)fL r o^0C ( ; ro TO 1110 = = ALOr-10 |17o ) * r O M ] % 0 ) + ( X-400 o ) *( „+3 .*< x-^on . ) ) RETURN 1110 r = ALO^ l Cf l „ + Y * « D * r O S { X / A O . ) PFTIPN 1 ? c = 7 a / < A n s ( X * X * X ) + l . ) Pi iTURN C FORESTRY iNVfSTMFNT RETURN FUNCTION 13 Y = 1 . + X 3 i F = 20 o / Y**!5 •K ,0 C /Y**33 +475 . /Y**^0 "1 . 1 ?* ( Y**40~ l „ ) PFTURfi C T^ST FUNCTIONS OP S^PT . 1967

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions

In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...

متن کامل

Selection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media

The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water.  So, the averaging method applied to compute hydraul...

متن کامل

A New Nonlinear Specification of Structural Breaks for Money Demand in Iran

In a structural time series regression model, binary variables have been used to quantify qualitative or categorical quantitative events such as politic and economic structural breaks, regions, age groups and etc. The use of the binary dummy variables is not reasonable because the effect of an event decreases (increases) gradually over time not at once. The simple and basic idea in this paper i...

متن کامل

RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM

This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...

متن کامل

HYBRID FUNCTIONS APPROACH AND PIECEWISE CONSTANT FUNCTION BY COLLOCATION METHOD FOR THE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

In this work, we will compare two approximation method based on hybrid Legendre andBlock-Pulse functions and a computational method for solving nonlinear Fredholm-Volterraintegral equations of the second kind which is based on replacement of the unknown functionby truncated series of well known Block-Pulse functions (BPfs) expansion

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013